Geometric regularity of powers of two-dimensional squarefree monomial ideals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

Arithmetical rank of squarefree monomial ideals of small arithmetic degree

In this paper, we prove that the arithmetical rank of a squarefree monomial ideal I is equal to the projective dimension of R/I in the following cases: (a) I is an almost complete intersection; (b) arithdeg I = reg I ; (c) arithdeg I = indeg I + 1. We also classify all almost complete intersection squarefree monomial ideals in terms of hypergraphs, and use this classification in the proof in ca...

متن کامل

Monomial Ideals with Primary Components given by Powers of Monomial Prime Ideals

We characterize monomial ideals which are intersections of powers of monomial prime ideals and study classes of ideals with this property, among them polymatroidal ideals.

متن کامل

castelnuovo-mumford regularity of products of monomial ideals

let $r=k[x_1,x_2,cdots, x_n]$ be a polynomial ring over a field $k$. we prove that for any positive integers $m, n$, $text{reg}(i^mj^nk)leq mtext{reg}(i)+ntext{reg}(j)+text{reg}(k)$ if $i, j, ksubseteq r$ are three monomial complete intersections ($i$, $j$, $k$ are not necessarily proper ideals of the polynomial ring $r$), and $i, j$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

Embedded Associated Primes of Powers of Square-free Monomial Ideals

An ideal I in a Noetherian ringR is normally torsion-free if Ass(R/I) = Ass(R/I) for all t ≥ 1. We develop a technique to inductively study normally torsion-free square-free monomial ideals. In particular, we show that if a squarefree monomial ideal I is minimally not normally torsion-free then the least power t such that I has embedded primes is bigger than β1, where β1 is the monomial grade o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2020

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-020-00951-6